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Definitions

Input: Directed graph G with n vertices V and m edges E









2-edge-connected  and  are strongly connected after any single edge removed,
i.e., there are 2 edge-disjoint paths from  to  and from  to  as in example

2-vertex-connected  and  are strongly connected after any single vertex
removed—not the case in this example

bridge an edge whose removal increases the number of strongly connected compo-
nents, find all in O(m) time [3]—in the example the edge from  to  is a bridge

articulation point a vertex whose removal increases the number of strongly con-
nected components, find all in O(m) time [3]—the vertex  is an articulation point

2-edge-connected graph all pairs of vertices are 2-edge-connected
2-vertex-connected graph all pairs of vertices are 2-vertex-connected and n ≥ 3
2-edge-connected block set of vertices that are pairwise 2-edge-connected, paths

might use edges outside of the block, computable in O(m) time [4]
2-vertex-connected block set of vertices that are pairwise 2-vertex-connected,

paths might use vertices outside of the block, in O(m) time [5]
2-edge-connected subgraphs maximal 2-edge-connected (induced) subgraphs
2-vertex-connected subgraphs maximal 2-vertex-connected (induced) subgraphs

In undirected graphs 2-edge/vertex-connected blocks and subgraphs coincide and can
be computed in O(m) time [6].

Results

The 2-edge-connected and the 2-vertex-connected subgraphs of a directed
graph can be computed in O(min{n2,m3/2}) time.

For constant k the k-edge-connected subgraphs can be computed in
O(min{n2,m3/2} logn) time and the k-vertex-connected subgraphs in
O(min{n2,m3/2} · n) time. Extends with slightly better dependence on m to undi-
rected graphs.

This poster: 2-edge-connected subgraphs in O(n2) [1] and O(m3/2) [2] time

Basic Algorithm for 2-Edge-Connected Subgraphs

while the graph G contains a bridge do
delete bridges from G in time O(m)

output the strongly connected components of G

Running time [7, 3]: O(mn)

Example with Θ(n) Iterations

The blue, dotted edges are bridges in the first iteration. After their deletion
the orange, dashed edges become bridges. This can happen Θ(n) times.

Example with Θ(n) Iterations

The blue, dotted edges are bridges in the first iteration. After their deletion
the orange, dashed edges become bridges. This can happen Θ(n) times.
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1-Edge-Out Set

Idea: Find directed edge cut of size ≤ 1 that separates “small” vertex set S from V \ S
in time proportional to size of S

1-edge-out set of  minimal vertex set with  ∈ S and ≤ 1 edge to V \ S

•G is 2-edge-connected if and only if G does not contain any 1-edge-out set
• Every 2-edge-connected subgraph is either completely contained in any 1-edge-

out set or does not intersect with it

Dense Graphs: O(n2) Time Algorithm [1]

if the graph G contains a 1-edge-out set S then
recurse on G[S] and G[V \ S]

else
output G as a 2-edge-connected subgraph

Observation: vertices of 1-edge-out set S have outdegree at most |S|
⇒ for |S| ≤ 2 search in graph G that contains first 2 outgoing edges of each vertex

Search for 1-Edge-Out Set in Sparse Subgraph

G0

|E0| ≤ 20 · n

G1

|E1| ≤ 21 · n

G2

|E2| ≤ 22 · n

Hierarchical Graph Decomposition [8]
•White vertices have outdegree ≤ 2

• 1-edge-out set S with |S| ≤ 2⇒ S is white
• 1-edge-out set induced by white vertices in G ⇒ 1-edge-out set in G

Running Time

•Use linear time algorithm based on [6, 7] on G, from  = 0 to logn till set found
• Identifies 1-edge-out S in time O(n ·min{|S|, |V \ S|})
•O(n) time per vertex, O(n2) in total

Sparse Graphs: O(m3/2) Time Algorithm [2]

Observation: Any new 1-edge-out set has lost outgoing edge
⇒ O(m) searches from vertices that lost outgoing edges in total are enough to find all

while the graph G contains bridges do
delete bridges and recompute strongly connected components
mark vertices that lost adjacent edges
while exists marked vertex  do

search for 1-edge-out or 1-edge-in set S of  with ≤
p
m edges

if found, remove edges between S and V \ S
unmark  and mark vertices that lost adjacent edges

output the strongly connected components of G

Local Search for 1-Edge-Out Sets with Depth-First Search

Observation: If we find path from  that ends outside 1-edge-out set of , reverse
edges of path and discover the 1-edge-out set with graph traversal from 

Finding a path with DFS:

• Assume 1-edge-out set S of  with ≤ Δ edges and outgoing edge (, y) exists
• Run DFS for 2Δ + 1 edges
•DFS leaves S exactly once, using the edge (, y)
• Assign each vertex  as weight the number of edges in DFS-subtraversal from 

Property 1: Vertices with weight > Δ form a path from  in DFS tree
Property 2: More than Δ weight can be picked up only with edges outside of S
⇒ Path of vertices with weight > Δ goes from  to a vertex outside of S

Running Time

• Identify 1-edge-out or 1-edge-in set S with ≤ Δ edges in time O(Δ) starting from
endpoints of deleted edges ⇒ total time O(m · Δ)
• If none of with ≤ Δ exists, do iteration of basic algorithm in time O(m); this can

happen at most m/Δ times ⇒ total time O(m2/Δ)
• Δ =

p
m⇒ total time O(m

p
m)


