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Definitions

Input: Directed graph G with n vertices V and m edges E
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2-edge-connected u and v are strongly connected after any single edge removed,
l.e., there are 2 edge-disjoint paths from u to v and from v to u as in example

2-vertex-connected u and v are strongly connected after any single vertex
removed—not the case in this example

bridge an edge whose removal increases the number of strongly connected compo-
nents, find all in O(m) time [3]—in the example the edge from u to w is a bridge

articulation point a vertex whose removal increases the number of strongly con-
nected components, find all in O(m) time [3]—the vertex a is an articulation point

2-edge-connected graph all pairs of vertices are 2-edge-connected
2-vertex-connected graph all pairs of vertices are 2-vertex-connected and n > 3

2-edge-connected block set of vertices that are pairwise 2-edge-connected, paths
might use edges outside of the block, computable in O(m) time [4]

2-vertex-connected block set of vertices that are pairwise 2-vertex-connected,
paths might use vertices outside of the block, in O(m) time [5]

2-edge-connected subgraphs maximal 2-edge-connected (induced) subgraphs
2-vertex-connected subgraphs maximal 2-vertex-connected (induced) subgraphs

In undirected graphs 2-edge/vertex-connected blocks and subgraphs coincide and can
be computed in O(m) time [6].

Results

The 2-edge-connected and the 2-vertex-connected subgraphs of a directed
graph can be computed in O(min{n2, m3/2}) time.

For constant k the k-edge-connected subgraphs can be computed In
O(min{n?,m32}logn) time and the k-vertex-connected subgraphs in
O(min{n2, m3/2} . n) time. Extends with slightly better dependence on m to undi-
rected graphs.

This poster: 2-edge-connected subgraphs in O(n?) [1] and O(m3/2) [2] time

Basic Algorithm for 2-Edge-Connected Subgraphs

while the graph G contains a bridge do
delete bridges from G in time O(m)

output the strongly connected components of G

Running time [7, 3]: O(mn)

Example with O(n) Iterations

The blue, dotted edges are bridges in the first iteration. After their deletion
the orange, dashed edges become bridges. This can happen ©(n) times.
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1-Edge-Out Set

Idea: Find directed edge cut of size < 1 that separates “small” vertex set S from V' \ S
In time proportional to size of S

1-edge-out set of u minimal vertex set withue S and <1 edgetoV\S

e G Is 2-edge-connected if and only if G does not contain any 1-edge-out set

e Every 2-edge-connected subgraph is either completely contained in any 1-edge-
out set or does not intersect with it

Dense Graphs: O(n?) Time Algorithm [1]

If the graph G contains a 1-edge-out set S then
recurse on G[S] and G[V \ 5]

else
output G as a 2-edge-connected subgraph

Observation: vertices of 1-edge-out set S have outdegree at most |S]|
= for |S| < 2! search in graph G; that contains first p) outgoing edges of each vertex

Search for 1-Edge-Out Set in Sparse Subgraph

Go G1 G>

|E2| <22-n

|Egl <29-n |E1] <21-n

Hierarchical Graph Decomposition [8]

e White vertices have outdegree < 2!

e 1-edge-out set S with |S| < 2! = S is white

e 1-edge-out set induced by white vertices in G; = 1-edge-out set in G

Running Time

e Use linear time algorithm based on [6, 7] on G, from (= 0 to logn till set found
e I[dentifies 1-edge-out S in time O(n - min{|S|, |V \ S|})

e O(n) time per vertex, O(n?) in total

Sparse Graphs: O(m?>¢) Time Algorithm [2]

Observation: Any new l-edge-out set has lost outgoing edge
= (O(m) searches from vertices that lost outgoing edges in total are enough to find all

while the graph G contains bridges do
delete bridges and recompute strongly connected components
mark vertices that lost adjacent edges
while exists marked vertex u do
search for 1-edge-out or 1-edge-in set S of u with < +/m edges
If found, remove edges between S and V\ S
unmark u and mark vertices that lost adjacent edges

output the strongly connected components of G

Local Search for 1-Edge-Out Sets with Depth-First Search

Observation: If we find path from u that ends outside 1-edge-out set of u, reverse
edges of path and discover the 1-edge-out set with graph traversal from u

Finding a path with DFS:

e Assume 1-edge-out set S of u with < A edges and outgoing edge (x, y) exists

e Run DFS for 2A + 1 edges

e DFS leaves S exactly once, using the edge (X, y)

e Assign each vertex v as weight the number of edges in DFS-subtraversal from v

Property 1: Vertices with weight > A form a path from u in DFS tree
Property 2: More than A weight can be picked up only with edges outside of S
= Path of vertices with weight > A goes from u to a vertex outside of S

Running Time

e Identify 1-edge-out or 1-edge-in set S with < A edges in time O(A) starting from
endpoints of deleted edges = total time O(m - A)

e If none of with < A exists, do iteration of basic algorithm in time O(m); this can
happen at most m/A times = total time O(m?2/A)

o A = 4y/m = total time O(m+m)



